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Within the solid-on-solid framework we map certain surfaces of a simple cubic crystal onto a
five-vertex model. The mapping scheme used differs from the more common body-centered solid-
on-solid mapping, which uses a six-vertex model and is only suitable for interfaces whose lattice
splits naturally into two sublattices. In the five-vertex model there is no touching of step lines and
the arrow-reversal symmetry is broken by construction. After reviewing the exact solution of the
five-vertex model and studying its phase diagram in the presence of an external field, we establish an

isomorphism between some phases of the vertex model with the (100), (110) and (101) faces of the
simple cubic crystal. We determine exactly the mean square height difference. If no field is applied
the flat surfaces undergo a transition at a critical temperature, where the inclination of the surfaces
begins to change, and roughening sets in. If, however, the inclination is kept constant by applying
a suitable field, the low-index flat (or high-index vicinal) surfaces remain smooth (or rough) from
zero up to infinite temperature, without undergoing any roughening transition.

PACS number(s): 05.50.+q

I. INTRODUCTION

The most frequently used model for a crystal-vapor in-
terface is the solid-on-solid (SOS) model [1]. The atoms
are densely packed in a lattice; at the interface the atoms
may sit on top of each other, but overhangs and vacan-
cies are excluded. Since there is no vapor, and also since
the bulk of the so-defined SOS crystal does not con-
tribute any degrees of freedom to the system and does
not melt, the model merely describes the solid surface
in a simplified strictly two-dimensional form. The first
argument for the existence of a singularity in the free en-
ergy of this system was given in Ref. [1]: for the crystal
this means [2] that above this singularity the surface is
rough, i.e., the nucleation barrier for two-dimensional nu-
cleation vanishes. It is well known that some versions of
the SOS model, which correspond to certain surfaces of
well-defined crystals, are isomorphic [3-5] to exactly solv-
able vertex models, in particular to the six-vertex model
[6,7]. This mapping scheme, proposed by van Beijeren
[3], is suitable for lattices which can be divided natu-
rally into two sublattices, i.e., bipartite lattices, as is the
case of (100) surfaces of bec [3], or (100) and (110) of
fcc [4,5] crystals. (We will use here the word bipartite
in a somewhat more restricted sense than elsewhere in
the literature, requiring not only that the lattice can be
split into two sublattices, but also that such splitting oc-
curs naturally.) For nonbipartite lattices, such as, e.g.,
the simple cubic (sc) crystal, however, this is not the
case. In order to describe nonbipartite crystal surfaces
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exhibiting square or rectangular symmetry another map-
ping procedure must be used.

Such a new method was introduced recently by Gar-
rod, Levi, and Touzani [8] (GLT) (as a natural extension
of previous studies by Garrod on two-dimensional growth
models [9]). For simplicity, we will treat here the surfaces
of a sc crystal. Since this mapping scheme is still rela-
tively new, we shall briefly review it, before proceeding
on.

Following closely Ref. [8], let us consider a rectangular
No x M, table, where a discrete height variable m;; is de-
fined at every site (i5). Let there be Lg steps (monatomic
or not) running obliquely from bottom left to top right,
and let L be the total level difference between the upper
and lower ends of the right side of the table. Thus, if s
labels the steps and if the sth step corresponds to a jump
of Am, units, then L = ), Am,. On the average the
y coordinate of each step changes by Ay = S from the
left to the right end of the table. Then the Miller indices
(hkl) of the vicinal surface so defined (h < 0;k,! > 0)
obey the relation |h|/k = S/Ny and k/l = L/M,.

If multiple steps exist, a sliding procedure can be ap-
plied [8] to split them into single steps, so that we can
consider single steps only on the crystal surface. The
number of steps now becomes L > L,. The size of the
table (originally No x Mp) is now changed. We assume
that No and M, had been chosen so that the resulting
table is now a square of side N, with N < Ny, M,. We
have Mo = N—-L, No = N—Q, where @ = LS/N. Thus
the Miller indices are given by h = —Q/u, k = L/u, and
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Il = (N—L)/u, where u is the largest common factor of Q,
L, and N — L. The steps so formed can now be identified
with the lines of the line representation of the six-vertex
model [7]. However, by virtue of the sliding procedure de-
scribed above, no touching of lines will occur at any site.
Vertex 2 (in the usual notation for vertices) is actually
absent and we are left with a five-vertex model. Thus the
nonbipartite crystal surfaces possessing square or rectan-
gular symmetry are isomorphic to the five-vertex model,
in contrast to the bipartite surfaces, which are isomorphic
to the six-vertex model. Three-point correlations, very
important for the GLT growth model, have been calcu-
lated in an elegant paper by Garrod [10]. In a previous
publication [11] we have presented the exact solution of
the five-vertex model on a square lattice. In the following
we will briefly review the main results.

On each link a variable taking two values (the arrow) is
defined; four crossing links form a vertez. To each vertex
a Boltzmann weight w; = exp(—pfe;) is associated, ¢;
being the vertex energy. The most general such model is
referred to as the sixteen(= 2%)-vertex model (unsolved).

Choosing the Boltzmann weights so that only the six
vertices with two entering and two exiting arrows have
finite weight, we have the usual six-vertex model [6,7].
In this case there are only four independent energies to
consider. This is because (a) the zero of energy can be
chosen arbitrarily and (b) the ice rule implies that e5 =
€¢ 1s no restriction, since vertices 5 and 6 always occur
in pairs.

Similarly, the field-free five-vertex case is defined [11]
by three Boltzmann weights (reducing further to two in-
dependent parameters when the arbitrariness of the zero
of energy is taken into account), i.e., w; = exp(—fe1), ws
= exp(—Pe3) = ws = exp(—Pey), and ws = exp(—Pes)
= wg = exp(—peq). Using these conditions and applying
the Bethe ansatz afresh [12] the general five-vertex model
was solved [11,13]. In terms of the variables 2 = w,/ws
and y = ws/ws the free energy is

+Q 1-A eip
fr = mpivn {61 —kBT/«@ In (m/y——se’?) P(P)dp} )
(1)

where the interaction constant of the five-vertex model
As is defined as As = (w? — w?)/wiws, the distribution
function is here simply

p(p) = ——A[1+ 1—2pv

e @)

1-— A5€ip

and p, is the vertical polarization p, = (n;+n4—n3)/NZ.
The zero-field phase diagram is presented in Fig. 1, where
the phase transitions take place along the curves a, b, and
c. Several aspects of the phase diagram are unusual, i.e.,
the ordered states (both ferroelectric and antiferroelec-
tric) are frozen-in zero-entropy phases and the disordered
phase of the symmetric six-vertex model is replaced by a

ferrielectric phase, with large entropy, but nonvanishing
polarizations.

The exact solution can also be obtained in the pres-
ence of a field (wsq # w3) [14]: in this case the Boltzmann
weights are four, corresponding to three independent pa-
rameters. This generalization is important for the ap-
plication to surfaces, which is the main concern of this
paper.

Using the five-vertex representation, we calculate in
the following section the mean square height difference
(MSHD) of the surfaces studied. With the knowledge of
the value of the MSHD we can classify the surfaces, cor-
responding to different phases of the five-vertex model,
into smooth and rough surfaces. If no field is applied,
the flat surfaces undergo a transition at a critical tem-
perature, where the inclination of the surfaces changes,
and they become rough. If, however, the inclination is
kept constant by applying a suitable field, the flat sur-
faces remain smooth from zero up to infinite temperature,
without undergoing any roughening transition.

FIG. 1. The phase diagram of the five-vertex model in an
external field, in terms of the Boltzmann weights ¢ = w;/ws
and y = w3/ws (w2 = 0, wz = ws, and ws = wg), for three
constant values of V: V = 0.5 (short-dashed line), V = 1.0
(continuous line), and V = 2.0 (long-dashed line). All curves
represent second-order transitions. The a, b, and c curves
represent the phase diagram in zero external field V = 1. fe
stands for a ferroelectric, fi for a ferrielectric, and af for an
antiferroelectric phase. The z = y = 1 point corresponds to
infinite temperature, while any point satisfying z/y = 0 or
y/z = 0 corresponds to a zero-temperature state.
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II. THE MEAN SQUARE HEIGHT DIFFERENCE

The mean square height difference over the interface is

gi; = ([mi; — moo)®) , (3)

where m;; = m(R;;) is the surface level (meaured in
crystal spacings) at site R;; on the surface, g;; depends
asymptotically only on the distance R = |R;; — Rgo| and
the ensemble average is taken for the SOS system. The
behavior of g;; defines roughness: if the asymptotic value
of g;; is finite, the interface is smooth; if it is infinite,
the interface is rough. Hereafter, we calculate exactly
the mean square height difference along a row, i.e., we
extract

9i = 90; = ([moj — moo]®) , (4)

in the exactly solvable five-vertex model.

In the GLT mapping scheme, as presented in Sec. I,
the mean inclination of a facet corresponds to P, = (n3+
ns)/N and P, = (ng + ns)/N. Here n; is the number of
vertices 7 in a row of the corresponding five-vertex model.
Using the definition [11] of the vertical and horizontal
polarizations of the five-vertex model, i.e., p, = (n; +
ng —n3)/N and pp = (n1 + nz — ng)/N, the results

l—pv
2

’thl—_Ph (5)

P, = 5

are immediately obtained. [We should mention that, sim-
ilarly, in the body-centered SOS (BCSOS) mapping the
surface inclination is given by the vertical and horizontal
polarizations of the corresponding six-vertex model.]

Considering the phase diagram of the five-vertex model
and using the simple Eqgs. (5) it can be seen that the
frozen-in ferroelectric phase correspond to the smooth
surfaces of the sc crystal. More specific, the Fel phase
corresponds [8] to the (100) surface and the FeIl phase
to the (110) surface of a sc crystal.

Returning to the MSHD, for the five-vertex case the
height difference which gives an inclination equal to P,
is

J
1—-o0j
moj—moo=z 2J ) (6)
J'l
where 0; = *1 is the vertical arrow variable at link j
along the horizontal row. The MSHD in a row defined in
Eq. (4) becomes

1 4=
EZ]—I 000’1 (7)

e

Only the asymptotic behavior of g; is relevant for critical-
ity. Thus we are led to look for the asymptotic behavior
of the (090;) equal-time correlation function. This can be
determined [15] using the results of the quantum inverse
scattering method [16], which are generally valid for in-
tegrable models and can be applied directly to the vertex
model or indirectly to its quantum spin chain transform
[17]. Thus we use the result [16],
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(o) = ~35 + (1) K =) (8)

In the region of the phase diagram close to the smooth
surfaces (see Fig. 1) p, — 1 (we are approaching the
ferroelectric phases), the critical exponent is § = 2 and
K = —K'. Both terms of Eq. (8) contribute to the
MSHD, and Eq. (7) gives

= Klnj, (9)

where K is the corresponding roughness constant.

Thus the fi phase of the five-vertex model (see Fig. 1)
corresponds to a rough surface of a sc crystal. Since this
domain corresponds to a ferrielectric phase, it has non-
vanishing polarization; the corresponding vicinal surface
will exhibit rounded edges for vicinal areas.

III. SURFACE BEHAVIOR IN THE FIELD-FREE
GLT MAPPING

Let us consider once more the phase diagram of Fig. 1,
and focus attention on a particular choice of parameters
in the Hamiltonian, namely, £ < €3 = 5 (¢ = €5 — €1).
This is a particularly easy, free fermion case whose parti-
tion functions was found many years ago by Wu [18].
More recently Garrod was able to calculate two- and
three-point correlations for this case [10]. It corresponds
to moving, as a function of temperature, on the horizon-
tal straight-line trajectory y = 1, from z = oo (T = 0) to
z=1 (T — 00). For z > 2 (kT < kT. = ¢/In 2) we have
a trivial frozen, ideal, flat (100) surface. All vertices are
of type 1: there are no defects, no entropy, and no fluc-
tuations. At x = 2 a second-order phase transition, of
the Pokrovsky-Talapov type [19], takes place, and steps
appear spontaneously, with a density ~ (2 — z)!/2; for
details see Sec. VI.

The surface turns, therefore, to a vicinal, of general
Miller indices (h, k, k), with A >> k. On the average, the
steps have a kinematic kink every second site. Additional
kinks and antikinks determine thermal meandering. In
turn, this drives an overall thermal roughening of the
vicinal surface. This seems to be a good realization, in an
exactly solvable model, of the vicinal surface roughening
described by Villain et al. [20]. At z = 2 the roughness
parameter K jumps from zero to 2/n2.

As the temperature increases further, the step density
increases continuously and so does the vicinal tilt angle
6 = arctan(v/2k/h), tending ultimately to the T — oo
values h = k, @ = arctany/2. At T = 00, the average ori-
entation of the initially (100) surface is therefore (111).
The surface is rough, but remarkably the roughness pa-
rameter K retains the constant value K = 2/72 at all
temperatures T > T..

The above discussion refers to the y = 1 case, but a
very similar evolution occurs along more general trajecto-
ries (only the mathematics is more complicated because
the free-fermion simplifications cannot be applied). In
all cases, when starting from a flat surface at large z,
the surface remains ideally (and trivially) flat up to the
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phase boundary at £ — y = 1; then it roughens, with a
Pokrovsky-Talapov transition, and at the same time it
begins to tilt, approaching progressively the (111) orien-
tation. For the general case, using conformal field theory
(16], for the roughness coefficient K is obtained

2 As
ﬁ [1 + PDI—_—Z;:I ; (10)

K =
where Ag and P, are defined by Egs. (1) and (5), respec-
tively.

IV. THE PHASE DIAGRAM IN A FIELD

As we have just seen, the surface phase diagram in
the field-free five-vertex model exhibits a T-dependent
change of average orientation. While this might turn out
to be of interest for special cases, it does represent a
disturbing feature in a more conventional context, where
the mean orientation is fixed by the boundary conditions.

Since the tilt angle corresponds simply to a finite po-
larization, it can be modified, and even suppressed, by
the application of an external field. It is therefore quite
fortunate that the five-vertex model can be solved exactly
for an arbitrary field direction and intensity. We sketch
the solution here; more details are contained in Ref. [14].

The arrow-reversal symmetry is already broken in the
system by construction. Thus we expect that a direct
external field will not change the behavior of the model.
We could in principle apply a vertical (v) and a horizontal
(h) field on every site. In fact, however, the physics of
the five-vertex model only depends on the difference h—v
(changing the sum h + v is in fact equivalent to changing
the energy €; of vertex 1). Thus it is not essentially
restrictive to take h = 0. Rather than incorporating the
vertical field into the vertex energies, let us keep wy, ws =
wy, and ws = we. In the noninteracting case, ie., y = 1,
the free energy becomes

/

fL = 51~—v—kBTq; InV

+q'
" kT / ln(m2 +1 -2z cosk)dk (11)

47 —q'

where V = exp(2v/kpT). The integration limit is ¢’ =
arccos[(z? + 1 — V%) /(2z)]. Two continuous phase tran-
sitions appear for ¢ = 1+ V and z = 1 — V with
critical exponent @ = 1/2. That is, the specific heat
c[T - Te4)] ~ (T — T.)~'/2, and it turns out that also
the susceptibility has the same behavior in both cases.

This means that the critical exponent of the suscepti-
bility is v = 1/2. The vertical (p,) and horizontal (ps)
polarizations per vertex can be easily computed, obtain-
ing

2
Pv = 1_“1,1
™

2 sin g’
pr = 1+ —arctan | ———— |} .
T cosq —x

It follows from Eq. (12) that in zero field the polarization
per vertex is p, = pp = 1 — (2/m) arccos(z/2), identical
with that obtained previously. Both p, and p, approach
unity in both x =1 -V and £ = 1 + V transitions with
a deviation proportional to /T — T..

Away from the free-fermion line (A5 # 0) we use the
same method as in Ref. [11]. The transition curves (see
Fig. 1) can be easily obtained with the use of the Leg-
endre transform fr(v) = fr(v = 0) — vp,. Curves a, b,
and ¢ from Fig. 1, corresponding to zero external field,
are transformed to

1 1
xz—‘;(y—;), (13)

corresponding to curve a,

2= JA+V)+PA-V?A+ VI (1)

corresponding to curve b, and

1-y

c=V_—7
1+y

(15)

corresponding to curve c, respectively. The phase tran-
sitions remain of the continuous type, with critical ex-

4.0

v/e

0.0

-4.0

'8.0 = - 2
0.0 4.0 8.0

kgT /¢

FIG. 2. The phase diagram of the modified KDP (potas-
sium dihydrogen phosphate) model in an external field. The
modified KDP model is defined by the energies ¢; = 0,
€2 = oo, and €3 = €4 = €5 = €¢ = €. The continuous
curves correspond to constant values of the vertical polar-
ization: curve a, p, = 1; curve b, p, = 1/2; curve ¢, p, = 0;
curve d, p, = —1/2; and curve e, p, = —1. The shaded re-
gions are ferroelectric phases, where the polarization is frozen
into p, =1 or p, = —1.
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ponents o = 1/2 and v = 1/2, that is, both the specific
heat and the susceptibility diverge like (T'—7.) /2. The
phase diagram for zero field and for different values of the
external field is given in Fig. 2.

Note that the curves defined by Eq. (15) for any V and
z = 0 give the only solution y = 1, while the curves given
by Egs. (13) and (14) intersect for any V at y = 0 and
z = V; see Fig. 2. The system in all the three ordered
phases exhibits a frozen-in state even in the presence of
the external field.

V. SMOOTH VERSUS ROUGH SURFACES
AT FIXED ORIENTATION

As we have shown in Sec. II, if we consider the GLT
mapping, it is clear that we can interpret the polariza-
tions P, and P}, of the five-vertex model as height differ-
ences per unit length, yielding the surface slope. Thus, as
in the case of the BCSOS model, we can directly translate
the calculated quantities of the five-vertex model into the
corresponding quantities of the GLT model. The only
difference between the correspondences of models (six-
vertex with BCSOS and five-vertex with GLT) is that
for the latter p, and p, must be replaced by P, and P.

Microscopically the roughening transition will be char-
acterized by the emergence of strong height fluctuations
on the facets. We are mainly interested in the fel and
feIl phases of Fig. 1, as they are appropriate for the
GLT model. However, as we will see later, the ¢ transi-
tion curve behaves similarly to the a or b curves.

The fel phase from Fig. 1 is a frozen-in ferroelectric
phase, whose free energy is equal to €;. Via the GLT
mapping, this phase corresponds to a (100) surface of
a sc crystal, as P, = 0 and P, = 0. The transition
temperature at V' = 1, see Eq. (14), is given by y = z—1,

ie.,
€5 — €4 €5 — €1

exp( kT, ) = 1+exp( kT, ) , (16)
where €3 = €4 and €5 = €. We are interested to know
whether the surface (100) exhibits a roughening transi-
tion or not. For this purpose, we include an external
field, imposing V' to be such that the (100) inclination
of the surface is kept constant (as we have seen, if no
external field is applied, the inclination begins to vary
with temperature at T.). First let us consider the non-
interacting y = 1 case. The values of V for which p, and
pn are constants are easily obtained. The phase diagram
versus the temperature is given in Fig. 2. Note that the
p» = 0 phase, existing in the case of the six-vertex model,
shrinks to a point. As it can be seen from Eq. (12), fix-
ing the polarizations at a constant value, we also fix the
value of ¢'. However, the transition is given by the ¢’ = 0
condition. Thus, fixing ¢’ at a nonzero value the tran-
sition, corresponding to curve b, will not appear. This
means that for V=2 — 1 or p, = 1, the system is built
up by vertices of type 1 only and therefore that the (100)
surface is smooth and frozen from T = 0 up to infinite
temperature. On the other hand, for any value of V for
which p, < 1 and is constant, the corresponding surface
is rough from T = 0 up to infinite temperature. The

roughness constant K, see Eq. (9), does not vary with
the temperature, being K = 2/m% through the whole
temperature range.

Away from the noninteracting case, the situation is
essentially the same. An external field which varies as

z(z — y)

V =
Vi =1)(y? - 2zy — 1) + 222

(17)

causes the integration limit Q from Eq. (1) to vanish and
fixes the polarizations at the p, = p, = 1 values. Thus
the free energy will be f; = €; — v and the system will
exhibit a frozen-in ferroelectric phase. As a consequence,
the corresponding (100) surface will be smooth at any
temperature. Fixing the polarizations at any other con-
stant value p, # 1, the corresponding surface will be
rough at any temperature.

The af phase is not easily reached in the GLT mapping
scheme. However, from the previous example we can
see that in this case also, any external field which fixes
the polarization fixes in the same manner the transition
curve, given in Eq. (15), and the roughening transition
shifts to T — oo.

The second frozen-in ferroelectric phase present in the
phase diagram from Fig. 1 is the feIl phase. The fell
phase is built up with vertices 4 (or 3, since there is
symmetry breaking in this case). This phase corresponds
via the GLT mapping to a (110) surface of a sc crystal,
as P, = 0 and P, = 1. [The case of vertex 3 would

correspond to a (iOl) surface, with P, = 1 and P, = 0.]
The transition temperature for zero external field, see
Eq. (14), is given by ¢ = y — 1/y, i.e.,

€5 — €1 €5 — &4 €4 — €5
exp (9522 = exp (G52 —emn (52

(18)

The (110) surface corresponding to the feIl phase is
a perfectly smooth surface. The situation is analogous
to the previous (100) case. That is, as the surface be-
comes rough, its inclination in zero field changes. With
an appropriate external field we can fix the polarization
and the transition is shifted away to infinite temperature.
Thus we can conclude that also in this case the interface
corresponding to the fe Il phase is smooth from T' = 0 up
to infinite temperature.

VI. VICINAL AREAS

Flat facets and curved surface regions, when they meet
at edges, can exhibit two types of behavior: sharp edges
with slope discontinuity or (rounded) smooth edges with
no slope discontinuity. Sharp edges correspond to first
order, smooth edges to second order phase transitions
(4,21,22].

As presented in Sec. IV the phase transitions exhibited
by the five-vertex model in the presence of an external
field are all continuous second order phase transitions.
Thus, in the cases analyzed hereafter only smooth edges
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can be found.

The behavior, near smooth edges, of the shape of the
curved interface is critical. Thus it can be given in the
form [16,23]

z — 29 = const X (z — xo)%, (19)

where a is a critical exponent. In order to calculate o
we are looking for an expansion of the free energy of the
form

fL = fu(P,=0)+P, fL
+p2 2 p3 gy (20)

where f}f ! represents the step free energy, the quadratic
and higher-order terms arise due to step-step interaction.

Since the calculation procedure is rather involved, we
describe it in detail only for the noninteracting fermion
case. For the general case we give just the final results,
restricting ourselves to a brief outline of the method used
(see the Appendix).

In the noninteracting (y = 1) case we place ourselves
near the b transition line (see Fig. 1), where the transition
occurs at z. = 1+ V), as determined in Sec. IV, with V =
1 corresponding to the zero-field case. On the y = 1 line,
an expansion can be made from two directions. One is the
T > T, ie., x < z., case: the transition is approached
from the rough side. We expand the expression of the
free energy for the noninteracting case, given in Eq. (11)
of Sec. IV, in Taylor series as a function of P,, around

P, =0, and using 8/8P, = (0x/0P,) 8/0x we obtain

fo = fo(P,=0) + kpT. fP(ze,y=1,V) P2+ -,
(21)

where f{‘)](zc,y =1,V) = 2n%z?/[(z. — 1)(z2 - 1+ V)],
which reduces to f}lz](mc, y = 1,1) = 7% in the zero exter-
nal field limit. Comparing Eq. (21) to Eq. (20) it can be

seen that the linear term f}f lis missing from Eq. (21).
Thus the step free energy is zero, as required for a rough
surface.

In order to see the critical behavior at smooth edges the
expansion from Eq. (20) must be done from the smooth
side. That is, we are looking for an expansion in the
T < T, or x > z. limit. This amounts to perturb the
smooth, frozen-in surface by introducing a small step
density [given by a small P,, in the form ¢' = 7P, < 1;
see Eq. (11)] and computing the effect on the free en-
ergy. Contrary to the previous (T > T.) case, in the
present situation P, is independent of z. (P, in this case
is a small perturbation introduced artificially to perturb
the smooth surface.) Thus we need to perform a two-
variable Taylor expansion, in both variables z and P,,
around z = z. and P, = 0. In order to do this, we write
the expression of the free energy from Eq. (11) with the
use of Clausen’s integral

Cly(z) = -/xln[2sin(:z'/2)]d:1:', (22)

obtaining

fr =1 —v — kgT P, nV

kpT
+787r—[012(27rP1, +2n) — Cly(27P,)
—Cl3(29) — 2nlnz] , (23)

where 7 = tan™!{sin(nP,)/[1/x — cos(nP,)]}. Close to
the transition, using the expansion [24] of Clausen’s inte-
grals for small argument, the free energy from the above
equation becomes

fr=¢, — v — kgT. P, InV

kgT. _ sin(nP,)
Inz. t 1ty 4
+ fiTc tan cos(mP,) — 1/x, (24)
Expanding in powers of P,, we obtain
fo=fu(P,=0) + kpT. ffl(zc,y=1,V) P,
_kBTc .fgﬂ(zc’y:lav) Ps + oy (25)

where f[[f’](:z:c,y =1,V) = [z./(zc — 1)]Inz, — InV and
U @ery = 1,V) = (72/6)[zc(ze + 1)/(zc — 1)¥] Inz..
In the free field case, these coefficients reduces to
W (zeyye = 1,1) = 2 In2 and fP(ze,pe = 1,1) =
w2 In2.

Away from the noninteracting case, we have two tran-
sitions to analyze, corresponding to curves a and b of
Fig. 1. We borrow the calculation method from the non-
interacting case; the calculations are given in the Ap-
pendix.

The results are rather simple: Eq. (A10) of the Ap-
pendix can be reduced to a form of Eq. (19),

7 - Zo= oo (FPP)VZ (X - X2, (26)
where the coefficient of Eq. (26) reduces to 2m/[9(es —
€1)'/?] in the noninteracting limit. Equation (26) defines
nothing else than the Pokrovsky-Talapov [19] or Gruber-
Mullins [25] universality class.

Another intereseting quantity is the distribution of
terrace widths. The surface mapping procedure used
throughout the present analysis assumed that steps do
not cross each other; there are no overhangs and nei-
ther step terminates. In these conditions, there is no
significant energetic intercations between steps (except
entropic repulsion); thus their structural properties can
be described [26] in terms of two lengths: (i) the aver-
age length along the direction of step wandering between
close approaches of adjacent steps and (ii) the average
spacing between steps (L). These spacings are in the
direction perpendicular to the average direction along
which the step edge runs. As the energetic intercations
are insignificant, there is no competing length in this
direction; thus (L) is determined solely by the vicinal
tilt (or misorientation [26]) angle 6 (for a definition, see
Sec. III). As in our model there are only single height
steps, the density of steps is 1/(L) = tanh 6 and is largely
independent of temperature [26].

In the GLT mapping scheme, as demonstrated in
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Sec. II, the mean inclination of a facet, i.e., tanh 6, cor-
responds to P, defined in Eq. (5). This quantity can be
easily calculated from the expression of the free energy
close to the transitions, i.e., curves a and b of Fig. 1.
The free energy close to these transtion curves is given
by Eq. (A1) for curve a and by Eq. (A2) for curve b, re-
spectively. We approach these transition curves from the
rough surface on a y = const line. The transitions ooccur
at ¢ = z., with z. given in Eq. (13) for the a transition
curve and in Eq. (14) for the b curve. Performing a gen-
eralized series expansion of P, for £ — z., we obtain for
the density of steps

%N\/g\/f_:_:c 27)

That is, in a Pokrovsky-Talapov transition the steps
appear spontaneously with a density proportional to
VZo— .

VII. DISCUSSION AND CONCLUSIONS

One of the simplest ways to model the crystal-vapor
interface is to consider densely packed atoms sitting on
top of each other, without vacancies or overhangs. For-
tunately, some versions of the so defined SOS model are
isomorphic to exactly solvable two-dimensional statistical
mechanics models, so that the behavior of the interfaces,
however unusual, can be predicted exactly. The most
frequently used mapping scheme is that of van Beijeren
[3], establishing a correspondence between some surfaces
of well-defined crystals and the six-vertex model [6,7].
This mapping is suitable for lattices which are naturally
separable into two sublattices, that is, surfaces of bipar-
tite lattice structure. Due to this, the BCSOS mapping
scheme worked well in cases such as the (001) facet 3] of
a bcc crystal or the (001) and (011) facets [4,5] of an fcc
crystal.

For other surfaces, e.g., for the (100) surface of the
sc crystal, however, this is not the case: the two-
dimensional lattice structures do not split naturally into
two sublattices. In this case the GLT [8] mapping
scheme can be used: then the corresponding statistical-
mechanical problem generates a five-vertex model. Using
the exact solution of the five-vertex model [11] we were
able to show that the frozen-in ferroelectric phases and
the ferrielectric phase that appear in the solution of the
five-vertex model (see Fig. 1) are suitable for the GLT
mapping. The fel phase correponds to the (100) surface
of a sc crystal and the fell phase to the (110) or the

(101) surface of a sc crystal. These interfaces are flat
and completely smooth. As we move away from the fel
or feIl phases into the fi phase the curvature of the sur-
faces changes smoothly and the interface becomes rough.
The roughness coefficient K, calculated for the nonin-
teracting case, shows no temperature dependence up to
infinitely high temperatures. Due to this behavior, the
five-vertex model is most suitable to describe the rounded
facet edges (corresponding to vicinal areas), as shown in

Sec. VI
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To study the possible roughening transitions, we must
fix the inclination of the surface. This is done in the five-
vertex model with the introduction of an external field.
In Sec. IV, the properties of the five-vertex model in the
presence of an external field are briefly presented and
the phase diagram is established. With these results we

were able to establish that the (100), (110), and (101)
flat surfaces of a sc crystal remain smooth from 7' = 0
up to infinite temperature. However, when an infinitesi-
mal but nonvanishing and constant inclination is applied
to these surfaces, the corresponding vicinal surfaces are
rough from T = 0 up to infinite temperature. In either
case, these surfaces do not therefore undergo any finite-
temperature roughening transition.

In Sec. VI the rounded portions of the equilibrium
shape have been considered. Their properties are deter-
mined by both the step energy and the step interactions.
Since two steps at a distance d from each other have an in-
teraction energy proportional to d~2 (repulsive if the two
steps have the same sign, attractive if they have opposite
signs), the form of the rounded portions is conventional,
i.e., the coordinates z and z are connected to each other
as

z2—2zg ~ —(z— a:o)o,

with @ = 3/2, in accordance with the treatments of Gru-
ber and Mullins (25] and Pokrovsky and Talapov [19]
(the same held for the six-vertex model in van Beijeren’s
mapping, as shown by Nolden [22]).

APPENDIX: EXPANSIONS OF THE FREE
ENERGY

In the interacting case we have two transitions to ana-
lyze, curves a and b of Fig. 1. We approach the transition
curves from a rough surface on a y = const line. The free
energy close to the transition curves, see Eq. (1) and
Refs. [11,14], is equal to

fE=es — v+ kBTq;I 1n(2)

|4
kT [7
+ B2 In(z? + y® — 2zy cos k) dk (A1)
2 Jo
near the a transition curve and
'
b q z
= — = In{ =
fL €1 v + kT - D(V)
q a2
_ kgT n(y? + 1—2y* 4 2zycosk
2r Jo z2 + y2 — 2zycosk
(A2)

near the b transition curve, respectively. An expansion
of Egs. (A1) and (A2) gives a behavior of the free energy
identical to Eq. (21) with

2 a:gy
(Te —y) (22 — y2 + V2 /y?)

for the a transition curve, where z. is given in Eq. (13)
and

ez, y,V) = 2 (A3)
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2x2yVin2
ol g,y v) = ¥ T

Cc

for the b transition curve, with z. given in Eq. (14).

To see the critical behavior at the smooth edges along
both transition curves we write Egs. (Al) and (A2) in
the form

/ 2
fi=es — v + kBTg— 1n<g—>
T

14
+k—2£—;7r—T Clz(2n P, + 2n) — Cl(27P,)
—Cly(2n) — 2n1n (%)J , (A5)
for curve a and
q/
fz-——sl - v - kBT;InV
k
+ -ZB;WT [Clg(ZﬂPU + 2n) — Cly(27 P, + 27/')
—C12(27]) + 012(21']’)
21
— 27ln (f) +217'1n<y )} (A6)
Yy Ty

for curve b, respectively, where Cly(z) is Clausen’s in-
tegral (21), n = tan™{sin(nP,)/[y/z — cos(nP,)]}, and
n' = tan~{sin(7P,)/[zy/(y? — 1) — cos(nP,)]}.

From Egs. (A5) and (A6) we immediately obtain for
the free energy close to the transition curves the form
known from the noninteracting limit; see Eq. (25):

ot = fpb(B, = 0) + kpTef7* Pze,y, V)P,

'_kBTc fz,b [3](:EC? Y, V) Pf +, (A7)
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A=y +22/V?) [ze + (zc—1)(1~y)]

x {zg(al —y®) + 22V2(y® — 22 - 1)(20* - 3) - VA - 1[(v* - 1)? — 22y}

(A4)
—
where
1 2e, V) = —2—In (f—> ~InV + 2Iny,
c— Y Yy
(A8)
o mzy(z.+y), (=
fi ey, V) = 5= (ﬁ) ’
L ( ) 6 (mc _ y)3 Y
and
bM(l‘c y, V) = In(=%) —InV
L b ) wc — y
¥l y -1
y2 —zy— 1 n zy )
(A9)
m z.y(ze + 1Y) T
fb[3] Ica 7V - l (—)
L (Teyy ) 6 (z.—y)3 y
2
™
—5 T - 1)
yz +zy — 1 yz -1
(y2 —zcy—1)3 zy )

Using the expression of the crystal shape in the (X,Y, Z)
plane from the Wulff construction [22] with the obvious
change p, — P, we obtain from Eq. (A7)

Z = Zo+ 2kpT.f2BIP3 |
(A10)

v

X = Xo + 3k T.f2*P1P2 .
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